MASS SPECTRA OF 12-OXOLUPANE DERIVATIVES*

J.Protiva, V.Pouzar and A.Vystrčil
Department of Organic Chemistry, Charles University, 12840 Prayue 2

Received November 13th, 1975

The mass spectra of a series of substituted 12-oxolupane derivatives $I-X I V$. and $X V I I$ were studied. The basic type of molecular ion fragmentation is a retro-Diels-Alder cleavage of the enol form occurring in ring C, under formation of fragments of type a. To a lesser extent ions of type b are also formed. The ions formed are characteristic of lupane derivatives with an oxo group in the position 12; hence, they may serve for the detection of this oxo group. The composition of ions was proved by high resolution MS and the fragmentation schemes were proved by means of the technique of direct analysis of daughter ions. On the basis of the facts available it was proved that the second hydroxy group, or the oxo group of the natural lupane derivative thurberine or thurberodione is not in the position 12 as originally supposed.

As the mass spectra of the 12-oxolupane derivatives prepared by us did not agree with those of the supposed 12-lupanone derivatives isolated from natural materials ${ }^{1,2}$, we decided to investigate their fragmentation and explain the differences observed. A series of 12 -oxolupane derivatives with various substituents was selected: 28 -hyd-roxy-12-lupanone ${ }^{3}$ (I), 13ß,28-dihydroxy-12-lupanone (II), 3 3 ,28-diacetoxy-12-lupanone (III), 3ß,28-diacetoxy-13 β-hydroxy-12-lupanone (IV), (20S)-20-acetoxy-30-nor--12-lupanone ${ }^{4}(V)$, (20S)-3 $\beta, 20,28$-triacetoxy-30-nor-12-lupanone ${ }^{4}(V I), 3 \beta, 20,28$-tri-acetoxy-29,30-dinor-12-lupanone ${ }^{5}$ (VII), 3 β, 28-diacetoxy-12-oxo-29,30-dinorlupan--20-oic acid ${ }^{6}$ (VIII), methyl $3 \beta, 28$-diacetoxy-12-oxo-29,30-dinorlupan-20-oate ${ }^{6}$ (IX), $3 \beta, 28$-dimethoxy-30-nor-12,20-lupanedione ${ }^{7}(X)$, (20S)-3 $\beta, 28$-dimethoxy-20-hydroxy--30-nor-12-lupanone ${ }^{7}(X I)$, (20S)-3ß,28-dimethoxy-20-acetoxy-30-nor-12-lupanone ${ }^{7}$ $(X I I)$, 3 β,28-dimethoxy-20-hydroxy-29,30-dinor-12-lupanone ${ }^{7}$ (XIII), 3 β,28-dimeth-oxy-20-acetoxy-29,30-dinor-12-lupanone ${ }^{7}(X I V)$ and methyl 28-acetoxy-3,12-dioxo--29,30-dinorlupan-20-oate (XVII). Hydroxy derivative $I I$ has been obtained ${ }^{3}$ as a by-product during the synthesis of derivative I. Derivatives $I I I$ and $I V$ were obtained analogously as I and $I I$, under the effect of hydrogen peroxide in acetic acid on $3 \beta, 28$ --diacetoxy-12-lupene ${ }^{3}(X X I I I)$. No other 12-oxolupane derivative has been synthesized so far and the number of supposed 12-oxolupane derivatives isolated from natural material is also rather limited ${ }^{1,8,9}$. A mass spectrum has been published for thurberodione only ${ }^{1}$ (XVIII) where the main fragment characterizing the fragmentation was

[^0]ion $c, m / e 247(91.5 \%)$, from which ions of $m / e 229(47.5 \%), 219(8 \%)$, and 205 (27.5%) were formed after elimination of water, carbon monoxide or ketene. The same fragmentation is also proposed ${ }^{2}$ for $3,12,16$-trioxo derivative of hopane (XIX) even though the intensity of the fragments was low: $m / e 247(2 \%), 229(2 \%), 219(8 \%)$. In paper ${ }^{1}$ the proof of the position of 12 -oxo groups has been carried out only indirectly, and for derivative $X I X$ the structure was confirmed ${ }^{2}$ by X-ray diffraction method; in neither of the two papers was the composition of the key ions corroborated by high resolution. In contrast to this in the case of 3β-acetoxy-12-oxo-18 α-ursane ${ }^{10}$ $(X X I)$ the fragmentation is quite different. The main fragment here is ion $d, m / e 234$ (100%) the formation of which is explained by a formal retro-Diels-Alder cleavage of the enol form in ring C, which is analogous to the cleavage of Δ^{12}-unsaturated derivatives of oleanene ${ }^{10,11}$, ursene ${ }^{10}$ and lupene ${ }^{12}$ derivatives. We would expect a similar type of fragmentation also in 3,12-dioxo-13 $\beta, 28$-epoxyoleanane ${ }^{13}(X X)$.

$I, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
II, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{OH}$
$H I, \mathrm{R}^{1}=\mathrm{OAc}, \mathrm{R}^{2}=\mathrm{Ac}, \mathrm{R}^{3}=\mathrm{H}$
$I^{\prime}, \mathrm{R}^{1}=\mathrm{OAc}, \mathrm{R}^{2}=\mathrm{Ac}, \mathrm{R}^{3}=\mathrm{OH}$

VII, $\mathrm{R}^{1}=\mathrm{OAc}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OAc}$
VIII, $\mathrm{R}^{1}=\mathrm{OAc}, \mathrm{R}^{2}=\mathrm{COOH}$ $I X, \mathrm{R}^{1}=\mathrm{OAc}, \mathrm{R}^{2}=\mathrm{COOCH}_{3}$
$X, \mathrm{R}^{1}=\mathrm{OCH}_{3}, \mathrm{R}^{2}=\mathrm{COCH}_{3}$

$\begin{aligned} V, \mathrm{R} & =\mathrm{H} \\ V I, \mathrm{R} & =\mathrm{OAc}\end{aligned}$

$X I, \mathrm{R}=\mathrm{H}$
$X I I, \mathrm{R}=\mathrm{Ac}$
trans, it is improbable that the fragmentation of the lupanone derivative ${ }^{1}$ described is ruled by the 12 -oxo group and that the fragmentation of the 12 -hopanone derivative^{2} is the principal one. Another difference between derivatives $X V I I$ and $X I X$ and $X X I$ is in the substitution of the position 3 . While derivatives $X V I I I$ and $X I X$ have a keto group in this position, derivative $X X I$ has a 3β-acetoxy group in it. Therefore we prepared 3,12-dioxo derivative of lupane $X V I I$ from the starting acid ${ }^{6} V I I I$, via its methyl ester ${ }^{6} I X$, which was hydrolyzed with alkali to diol $X V$. From it partial acetylation ${ }^{14}$ gave monoacetate $X V I$ which was oxidized with chromium trioxide in pyridine to diketone $X V I I$. Its structure was proved by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra analysis.

$X I I, \mathrm{R}=\mathrm{H}$
$X I V, \mathrm{R}=\mathrm{Ac}$

XVII

XIX

$X V, \mathrm{R}=\mathrm{H}$
$X V I, \mathbf{R}=\mathrm{Ac}$

XVIII

$X X$

The presence of a 12 -oxo group in the molecule is confirmed by the signal of 13β hydrogen (2.64 p.p.m.) which appears in the form of a doublet with $J_{13,18} \approx 11 \mathrm{~Hz}$, and the position of the 8β-methyl group signal at $1 \cdot 306$ p.p.m. These signals are

$X X I$

XXIII

a

XXII

$X X I V, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OAC}$
$X X V, \mathrm{R}^{1}+\mathrm{R}^{2}=0$

b
$a_{1}, m / e 250, \mathrm{R}^{1}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OH}$
$a_{2}, m / e 292, \mathrm{R}^{1}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OAc}$
$a_{3}, m / e 218, \mathrm{R}^{1}=\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{R}^{2}=\mathrm{CH}_{3}$
$a_{4}, m / e 276, \mathrm{R}^{1}=\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OAc}$
$a_{5}, m / e 248, \mathrm{R}^{1}=\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OCH}_{3}$
$a_{6}, m / e 264, \mathrm{R}^{1}=\mathrm{COCH}_{3}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OCH}_{3}$
$a_{7}, m / e 252, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OCH}_{3}$
$a_{8}, m / e ~ 308, \mathrm{R}^{1}=\mathrm{COOCH}_{3}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OAc}$
$a_{9}, m / e 294, \mathrm{R}^{2}=\mathrm{COOH}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OAc}$
$b_{1}, m / e 205, \mathrm{R}^{1}=\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{R}^{2}=\mathrm{CH}_{3}$
$b_{2}, m / e 263, \mathrm{R}^{1}=\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OAc}$
$b_{3}, m / e 235, \mathrm{R}^{1}=\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OCH}_{3}$
$b_{4}, m / e 295, \mathrm{R}^{1}=\mathrm{COOCH}_{3}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OAc}$
$b_{5}, m / e 281, \mathrm{R}^{1}=\mathrm{COOH}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OAc}$
characteristic of 12 -oxolupane derivatives ${ }^{3-6}$. The presence of a 3 -oxo group in the molecule follows from the comparison of the methyl signal shifts with those in the spectra of corresponding 3β acetoxy-12-oxolupane derivative $I X$. The values of the
changes agree with the differences between 3β-acetoxylupane ($X X I V$) and 3-oxolupane ($X X V$) (Table I). In the mass spectrum of diketone $X V I$ even weak ions at $m / e 247,229$ and 219 are absent. From this it is evident that the differing fragmentation according to ${ }^{1}$ cannot be explained by the effect of the 3-oxo group either. As the only published derivative in which the position of the 12 -oxo group is certain is triketone ${ }^{2} X I X$ (proof by X-ray diffraction) ${ }^{15}$, we decided to check its mass spectrum more thoroughly. From Table II it is evident that the ions belonging to the

Table I

Characteristic Shifts of Methyl Singlets and Their Changes ($\Delta \delta$) Due to the Anisotropy of Carbonyl

The ${ }^{1} \mathrm{H}$-NMR spectra were measured in deuteriochloroform, using tetramethylsilane as internal reference. The chemical shifts are given in p.p.m. (δ-scale).

Compound	4α	4β	10β	8β	14α
$X X I V$	0.84	0.84	0.87	1.04	0.92
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
$X X V^{a}$	1.08	1.03	0.95	1.07	0.95
	$(+0.24)$	$(+0.19)$	$(+0.08)$	$(+0.03)$	$(+0.03)$
$I X^{b}$	0.84	0.84	0.89	1.24	0.84
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
$X V I I$	1.09	1.06	1.01	1.31	0.88
	$(+0.25)$	$(+0.22)$	$(+0.12)$	$(+0.07)$	$(+0.04)$

${ }^{a}$ The assignment of methyl signals was done according to ref. ${ }^{16} ;{ }^{b}$ See ref. ${ }^{6}$.

Table II
Mass Spectrum of Triketone XIX
The intensity of ions is calculated with reference to ion $m / e 205$, because the intensity of the base peak is too high.
$M / e\left(\%\right.$, composition): $512\left(3 \cdot 5, \mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{5}\right), 497\left(85, \mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{5}\right), 453\left(19, \mathrm{C}_{29} \mathrm{H}_{41} \mathrm{O}_{4}\right)$, $435\left(11, \mathrm{C}_{29} \mathrm{H}_{39} \mathrm{O}_{3}\right), 425\left(84, \mathrm{C}_{28} \mathrm{H}_{41} \mathrm{O}_{3}\right), 411\left(10, \mathrm{C}_{27} \mathrm{H}_{39} \mathrm{O}_{3}\right), 409\left(12, \mathrm{C}_{27} \mathrm{H}_{37} \mathrm{O}_{3}\right)$, $369\left(8, \mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{3}\right), 302\left(8, \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}\right), 289\left(12, \mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{2}\right), 277\left(8, \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{3}\right)$, $249\left(23, \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3}\right), 247\left(12, \mathrm{~d}(2: 1) \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}, \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}\right.$),
233 (15, d (2:1) $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}, \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}$), $231\left(15, \mathrm{~d}(3: 1) \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}, \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}\right.$), 229 (13, d (2:1) $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2}, \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}$), $221\left(25, \mathrm{~d}(5: 1) \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{2}, \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}\right.$), 219 (26, d (2:1) $\left.\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}, \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}\right), 209\left(50, \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{3}\right.$), $205\left(100, \mathrm{~d}(1: 2) \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}, \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}\right), 87\left(4250, \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}\right)$.

Table III

Mass Spectra of Derivatives $I-X I V$ and $X V I I$

I, $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{2}$, m.w. 442

$m / e\left(\%\right.$, composition): $442\left(16, \mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{2}\right), 427\left(26, \mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}_{2}\right), 411\left(14, \mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}\right)$,
$409\left(12, \mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}\right), 393\left(10, \mathrm{C}_{29} \mathrm{H}_{45}\right), 250\left(9 \cdot 5, \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2}\right), 219\left(19, \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}\right)$,
$205\left(18, \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}\right), 201\left(19, \mathrm{C}_{15} \mathrm{H}_{21}\right), 191\left(100, \mathrm{~d}(6: 1) \mathrm{C}_{14} \mathrm{H}_{23}, \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}\right)$,
177 (80, d (6:1) $\mathrm{C}_{13} \mathrm{H}_{21}, \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}$).
II, $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{3}$, m.w. 458
$m / e\left(\%\right.$, composition): $458\left(6, \mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{3}\right), 440\left(21, \mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{2}\right), 427$ (7), 425 (6), 422 ($6, \mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}$), $409\left(6, \mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}\right), 397\left(8, \mathrm{C}_{27} \mathrm{H}_{41} \mathrm{O}_{2}\right), 275\left(23, \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}\right)$,
$248\left(15, \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}\right), 235\left(32, \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{2}\right), 223\left(11, \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{2}\right), 217\left(28, \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}\right)$,
$207\left(33, \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}\right), 205\left(21, \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}\right), 191\left(100, \mathrm{C}_{14} \mathrm{H}_{23}\right), 177\left(46, \mathrm{C}_{13} \mathrm{H}_{21}\right)$.
III, $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{O}_{5}$, m.w. 542
m / e (\%): 542 (4), 527 (9), 482 (4), 467 (5), 292 (7), 277 (7), 249 (8), 232 (13), 219 (11), 217 (10), 201 (13), 189 (41), 175 (24), 43 (100).

IV, $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{O}_{6}$, m.w. 558
m / e (\%): 558 (4), 540 (2), 527 (2), 498 (6), 333 (8), 290 (8), 277 (8), 273 (6), 265 (5), 253 (6), 249 (10), 235 (10), 217 (10), 205 (10), 204 (13), 189 (56), 175 (15), 43 (100).
$V, \mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3}$, m.w. 470
$m / e\left(\%\right.$, composition): $470\left(4, \mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3}\right), 455\left(1, \mathrm{C}_{30} \mathrm{H}_{47} \mathrm{O}_{3}\right), 427\left(100, \mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}_{2}\right)$, $410\left(28, \mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}\right), 395\left(27, \mathrm{C}_{28} \mathrm{H}_{43} \mathrm{O}\right), 377\left(3, \mathrm{C}_{28} \mathrm{H}_{41}\right), 218\left(34, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}\right)$, 205 (33, d (3:1) $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}, \mathrm{C}_{15} \mathrm{H}_{25}$), 203 (35), 191 ($50, \mathrm{C}_{14} \mathrm{H}_{23}$),
177 (61, d (1:6) $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}, \mathrm{C}_{13} \mathrm{H}_{21}$).
VI, $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{7}$, m.w. 586
$m / e\left(\%\right.$, composition): $586\left(2, \mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{7}\right), 571\left(1, \mathrm{C}_{34} \mathrm{H}_{51} \mathrm{O}_{7}\right), 543\left(27, \mathrm{C}_{33} \mathrm{H}_{51} \mathrm{O}_{6}\right)$,
$526\left(12, \mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{5}\right), 511\left(20, \mathrm{C}_{32} \mathrm{H}_{47} \mathrm{O}_{5}\right), 483\left(16, \mathrm{C}_{31} \mathrm{H}_{47} \mathrm{O}_{4}\right), 453\left(14, \mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}_{3}\right)$,
$451\left(16, \mathrm{C}_{30} \mathrm{H}_{43} \mathrm{O}_{3}\right), 276\left(18, \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}\right), 263\left(9, \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{3}\right), 216$ (12),
203 (28, d (3:1) $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}, \mathrm{C}_{15} \mathrm{H}_{23}$), 201 (20, d (3:1) $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}, \mathrm{C}_{15} \mathrm{H}_{21}$), 43 (100, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$).
VII, $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{7}$, m.w. 572
$m / e\left(\%\right.$, composition): $572\left(4, \mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{7}\right), 557\left(2, \mathrm{C}_{33} \mathrm{H}_{49} \mathrm{O}_{7}\right), 529\left(6, \mathrm{C}_{32} \mathrm{H}_{49} \mathrm{O}_{6}\right)$,
$512\left(20, \mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{5}\right), 497\left(39, \mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{5}\right), 469\left(8, \mathrm{~d}(1: 5) \mathrm{C}_{29} \mathrm{H}_{41} \mathrm{O}_{5}, \mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}_{4}\right.$),
$439\left(21, \mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{3}\right), 437\left(13, \mathrm{C}_{29} \mathrm{H}_{41} \mathrm{O}_{3}\right), 267\left(35, \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{4}\right), 262\left(35, \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}\right)$,
249 (20, d (2:1) $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3}, \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{2}$), $220\left(14, \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}\right.$),
202 (24, d (8:1) $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}, \mathrm{C}_{15} \mathrm{H}_{22}$), 189 (78), 175 (41), 43 (100).
VIII, $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{7}$, m.w. 544
$m / e\left(\%\right.$, composition): 544 ($5, \mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{7}$), 529 (6), 526 (5), 511 (17), 498 ($5, \mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{6}$), 484 (8), 469 (15), 466 (10), 425 (14, $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{O}_{3}$), 294 ($25, \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}$), 281 (8), 276 (19, $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}$), 249 (10, $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{2}$), 248 (8), 234 (19, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$), 204 (21), 189 (67), 175 (55), 43 (100).

Table III
(Continued)
$I X, \mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{7}$, m.w. 558
m / e (\%): 558 (5), 543 (10), 527 (5), 511 (27), 498 (12), 483 (5), 469 (11), 439 (9), 425 (12), 308 (18), 295 (12), 276 (15), 248 (34), 206 (46), 189 (32), 175 (33), 43 (100).
$X, \mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{4}$, m.w. 486
$m / e\left(\%\right.$, composition): $486\left(6, \mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{4}\right), 471\left(27, \mathrm{C}_{30} \mathrm{H}_{47} \mathrm{O}_{4}\right), 453\left(6, \mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}_{3}\right)$, $441\left(14, \mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{3}\right), 264\left(32, \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}\right), 246\left(19, \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}\right), 232\left(18, \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}\right)$,
221 (24, d (6:1) $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{2}, \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}$), 201 (30 , d (5:1) $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}, \mathrm{C}_{15} \mathrm{H}_{21}$), 189 (50), 175 (25), 43 (100).
$X I, \mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{4}$, m.w. 488
$m / e\left(\%\right.$, composition): $488\left(10, \mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{4}\right), 473\left(10, \mathrm{C}_{30} \mathrm{H}_{49} \mathrm{O}_{4}\right), 470\left(17, \mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3}\right)$, $455\left(34, \mathrm{C}_{30} \mathrm{H}_{47} \mathrm{O}_{3}\right), 444\left(53, \mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{3}\right), 429\left(75, \mathrm{C}_{28} \mathrm{H}_{45} \mathrm{O}_{3}\right), 425$ (50), 393 (13), $238\left(5, \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}\right), 248\left(20, \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}\right), 235\left(22, \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{2}\right), 221\left(57, \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}\right)$, 203 (53, d (3:1) $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}, \mathrm{C}_{15} \mathrm{H}_{23}$), 189 (100), 175 (72).

XII, $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{O}_{5}$, m.w. 530
m / e (\%, composition): 530 ($17, \mathrm{C}_{33} \mathrm{H}_{54} \mathrm{O}_{5}$), 515 (2), 487 (24), 470 (17), 455 (47),
$438\left(9, \mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{2}\right), 425\left(64, \mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{2}\right), 393$ (10), 248 ($25, \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}$), $235\left(19, \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{2}\right.$), $221\left(25, \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}\right), 203$ (35, d (6:1) $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}, \mathrm{C}_{15} \mathrm{H}_{23}$), 189 (60), 175 (44), 43 (100).

XIII, $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{4}$, m.w. 474
m / e (\%, composition): $474\left(12, \mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{4}\right.$), $459\left(45, \mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}_{4}\right.$), 456 (12), 444 (17),
$441\left(39, \mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{3}\right), 429\left(43, \mathrm{C}_{28} \mathrm{H}_{45} \mathrm{O}_{3}\right), 411\left(47, \mathrm{C}_{28} \mathrm{H}_{43} \mathrm{O}_{2}\right), 274\left(12, \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}\right)$,
$252\left(9, \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}\right), 234\left(17, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}\right), 227\left(15, \mathrm{~d}(4: 1) \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}, \mathrm{C}_{17} \mathrm{H}_{23}\right)$, 221 (53, d (1:1) $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{2}, \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}$), 189 (78, d (1:1) $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}, \mathrm{C}_{14} \mathrm{H}_{21}$), 175 (80, d (1:1) $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}, \mathrm{C}_{13} \mathrm{H}_{19}$), 147 (100).
$X I V, \mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{5}$, m.w. 516
$m / e(\%): 516$ (4), 501 (2), 456 (5), 441 (33), 425 (5), 411 (17), 294 (3), 234 (15), 227 (12), 221 (24), 202 (30), 189 (52), 175 (38), 43 (100).

XVII, $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{6}$, m.w. 514
$m / e\left(\%\right.$, composition): $514\left(4, \mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{6}\right), 499\left(7, \mathrm{C}_{30} \mathrm{H}_{43} \mathrm{O}_{6}\right), 483\left(10, \mathrm{C}_{30} \mathrm{H}_{43} \mathrm{O}_{5}\right)$, 467 ($34, \mathrm{C}_{29} \mathrm{H}_{39} \mathrm{O}_{5}$), 454 (7), $439\left(3, \mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{4}\right.$), 425 ($25, \mathrm{C}_{27} \mathrm{H}_{37} \mathrm{O}_{4}$), $407\left(6, \mathrm{C}_{27} \mathrm{H}_{35} \mathrm{O}_{3}\right.$), $394\left(9, \mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{2}\right), 381\left(20, \mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{2}\right), 308\left(22, \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}\right), 295\left(10, \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{5}\right)$, $276\left(27, \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}\right), 248\left(35, \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}\right), 235\left(14, \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}\right), 216\left(30, \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}\right)$, 206 ($71, \mathrm{~d}(3: 1) \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}, \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}$), 205 ($43, \mathrm{~d}(1: 2) \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}, \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}$), $147\left(100, \mathrm{C}_{11} \mathrm{H}_{15}\right)$.
supposed fragmentation of 12 -oxo derivatives are of very small intensity. They are doublets in which the ion of the composition corresponding to this fragmentation is always less represented. For example ion $m / e 247$ is composed of a fragment of the compositions $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}$ and $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}$, which occur in a $2: 1$ ratio. From this we judge that the proposed fragmentation will not be the main type of fragmentation of this derivative. Simultaneously, owing to the oxo group in the position 16, the fragmentation becomes more complex than in the case of our 3,12-dioxo derivative $X V I I$, and therefore it will not be typical of the fragmentation of 12-oxo derivatives.

EXPERIMENTAL

The melting points were measured on a Kofler block and they were not corrected. Optical rotation was measured in chloroform on an automatic ETL-NPL (Bendix-Ericsson) polarimeter, with a $\pm 2 \%$ accuracy. The infrared spectra were measured in chloroform on a UR 20 (Zeiss, Jena) spectrophotometer. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were measured in deuteriochloroform, using tetramethylsilane as internal reference, on a Varian HA-100 instrument; chemical shifts are in p.p.m., δ-scale. The mass spectra were measured on a Varian MAT 311 spectrometer, energy of ionizing electrons 70 eV , ionizing current 1 mA , ion source temperature $200^{\circ} \mathrm{C}$, temperature of direct inlet system $90-190^{\circ} \mathrm{C}$. The composition of all ions in Table III was confirmed by high resolution, with an error of less than 5 p.p.m. All fragmentation transitions were proved by the DADI (direct analysis of daughter ions) ${ }^{17}$ technique.

3ß,28-Diacetoxy-12-lupanone (III) and 3ß,28-Diacetoxy-13ß-hydroxy-12-lupanone (IV)
Hydrogen peroxide ($2.5 \mathrm{ml}, 30 \%$) in acetic acid (2.5 ml) was added dropwise to a solution of $3 \beta, 28$-diacetoxy-12-lupene ${ }^{3}$ (XXIII) (200 mg) in acetic acid (8 ml) and the mixture was heated on a water bath for 3 hours. Hot water was added $(20 \mathrm{ml})$ and the precipitated substance obtained by filtration. Chromatography on silica gel (30 g), using light petroleum for elution, gave 50 mg of 12 -oxo derivative III, m.p. $245-248^{\circ} \mathrm{C}$ (ether-hexane), $[\alpha]_{D}-10^{\circ}$ (c 0.20), IR spectrum: $1030,1255,1723\left(\mathrm{CH}_{3} \mathrm{COO}\right), 1709(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. For $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{O}_{5}(542 \cdot 9)$ calculated: $75 \cdot 23 \% \mathrm{C}$, $10.03 \% \mathrm{H}$; found: $75.65 \% \mathrm{C}, 9.76 \% \mathrm{H}$. On elution with a mixture of light petroleum and ether ($9: 1$) 40 mg of hydroxy derivative $I V$ were obtained, m.p. $279-283^{\circ} \mathrm{C}$ (ether), $[\alpha]_{\mathrm{D}}-4^{\circ}(c 0.49)$, IR spectrum: $1030,1255,1724\left(\mathrm{CH}_{3} \mathrm{COO}\right), 1710(\mathrm{C}=\mathrm{O}), 3600(\mathrm{OH}) \mathrm{cm}^{-1}$.

Methyl 28-Acetoxy-3,12-dioxo-29,30-dinorlupan-20-oate (XVII)
A solution of potassium hydroxide (200 mg) in ethanol (25 ml) was added to a solution of methyl ester ${ }^{6} I X(310 \mathrm{mg})$ in benzene (30 ml) and the mixture was heated at $50^{\circ} \mathrm{C}$ for 2 hours. After evaporation of solvent the residue was dissolved in ether and washed with 5% hydrochloric acid and water, dried over anhydrous sodium sulfate and evaporated. Yield 220 mg of amorphous diol $X V$. IR spectrum: $1430,1714\left(\mathrm{COOCH}_{3}\right), 1700,(\mathrm{C}=0), 3610(\mathrm{OH}) \mathrm{cm}^{-1}$. Acetic anhydride (0.5 ml) was then added dropwise to a solution of diol $X V(210 \mathrm{mg})$ in pyridine (10 ml) at $0^{\circ} \mathrm{C}$. The mixture was allowed to stand in the cold for 40 minutes, then decomposed with water and extracted with ether. The ethereal fraction was extracted with water, dried over anhydrous sodium sulfate and evaporated. Yield 170 mg of a mixture of monoacetate $X V I$ with starting diol $X V$. After separation of the mixture by preparative thin-layer chromatography
on silica gel 100 mg of monoacetate $X V I$ and 20 mg of diol $X V$ were obtained. IR spectrum of monoacetate XVI: $1035,1240,1720\left(\mathrm{CH}_{3} \mathrm{COO}\right), 1700(\mathrm{C}=\mathrm{O}), 1430,1720\left(\mathrm{COOCH}_{3}\right)$, $3600(\mathrm{OH}) \mathrm{cm}^{-1}$. Chromium trioxide (175 mg) dissolved in pyridine (2 ml) was then added dropwise to a solution of monoacetate $X V I(70 \mathrm{mg})$ in pyridine (3 ml) and the mixture was allowed to stand at room temperature for 2 hours. After dilution with water it was extracted with ether and the extract washed three times with hydrochioric acid (5%) and with water, dried over anhydrous sodium sulfate and evaporated. Yield 60 mg of amorphous diketone XVII. IR spectrum: $1035,1240,1720\left(\mathrm{CH}_{3} \mathrm{COO}\right), 1700(\mathrm{C}=\mathrm{O}), 1720\left(\mathrm{COOCH}_{3}\right) \mathrm{cm}^{-1} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum: $0.88 \mathrm{~s}\left(\mathrm{CH}_{3}\right), 1.01 \mathrm{~s}\left(\mathrm{CH}_{3}\right), 1.06 \mathrm{~s}\left(\mathrm{CH}_{3}\right), 1.09 \mathrm{~s}\left(\mathrm{CH}_{3}\right), 1.31 \mathrm{~s}\left(\mathrm{CH}_{3}\right), 2.07 \mathrm{~s}$ (28-$\left.-\mathrm{CH}_{3} \mathrm{COO}\right), 2.3 \mathrm{~m}\left(\mathrm{C}_{(11)}-\mathrm{H}_{2}, \mathrm{C}_{(19)}-\mathrm{H}, \mathrm{C}_{(2)}-\mathrm{H}_{2}\right), 2.63 \mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}\left(\mathrm{C}_{(13)}-\mathrm{H}\right), 3.63 \mathrm{~d}+$ $+4.23 \mathrm{~d}\left(\mathrm{C}_{(28)}-\mathrm{H}_{2}\right), 3.75 \mathrm{~s}\left(\mathrm{COOCH}_{3}\right)$ p.p.m. CD spectrum (dioxan): $\lambda_{\max }(\Delta \varepsilon)=323(0)$, $312(+0.17) 307(+0.08), 302(+0.15), 297(0), 277(-0.17), 252(0)$.

RESULTS AND DISCUSSION

Delivatives $I-X I V$ and $X V I I$ were divided into 5 groups according to structural relationships and thus also similar fragmentation pattern.

Group A includes the simplest 12 -oxolupane derivatives I and $I I I$. Molecular ion of 28-hydroxy-12-lupanone (I) loses a methyl radical under formation of ion $m / e 427$, radical $\mathrm{CH}_{2} \mathrm{OH}$ under formation of ion $m / e 411$, and ion $a_{1}, m / e 250$, is formed by retro-Diels-Alder cleavage of ring C (by a formally explainable formation of enol form). The ion $m / e 427$ loses a molecule of water under formation of ion $m / e 409$. Ion $m / e 411$ also loses a molecule of water under formation of ion $m / e 393$, while ion $e_{1}, m / e 219$, is formed by cleavage of ring C (analogously as in the case of ion $m / e 442$). Further ions $m / e 205,191\left(f_{1}\right)\left(\right.$ ref. $\left.{ }^{10}\right)$, and $177\left(g_{1}\right)$ are formed. Ions of type f and g represent the fragments of rings \mathbf{A} and \mathbf{B}. In both cases their formation is explicable by retro-Diels-Alder decomposition of the enol form which does not take place in a simple manner but under transfer of hydrogen ${ }^{10}$ from the methyl group 8β or by migration or splitting of a methyl radical. Ion e_{1} is also formed from ion a_{1} by loss of radical ${ }^{\circ} \mathrm{CH}_{2} \mathrm{OH}$ which sets a molecule of water free under formation of ion m / e 201. Diacetate $I I I$ is fragmented analogously. Fragment $a_{2}, m / e 292$, liberates the radical ${ }^{\circ} \mathrm{CH}_{2} \mathrm{OAc}$ under formation of ion $e_{1}, m / e 219$. Fragments $f_{2}, m / e 249, h$, $m / e 189\left(\right.$ ref. $\left.^{10}\right)$, and $i, m / e 175$ belong to rings A and B . In both substances the ions of type b are of negligible intensity.

Substances of group $B(V-V I I)$ have an acetoxyl group in the position 20 and they differ in the substitution at the positions $3 \beta, 20$ and 28 . The first fragment which occurs in all three substances is formed on loss of a methyl radical and it is of very low intensity. The further, common loss is 43 mass units $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right)$, occurring in these three substances only and in derivative $X I I$, i.e. only in substances with an acetoxyl group in the position 20. The ion formed from derivative V is even the base peak. Its occurrence could be explained either by a simultaneous loss of carbon monoxide and a methyl radical, or - more probably - by the loss of the radical $\mathrm{CH}_{3} \mathrm{CO}^{*}$ from the acetoxy group in the position 20 . That this radical does not originate from another

$c, m / e 247$

$e_{1}, m / e 219, \mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ $e_{2}, m / e 203, \mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$

g, m/e 177

d, m/e 234

$f_{1}, m / e 191, \mathrm{R}=\mathrm{H}$
$f_{2}, m / e 249, \mathrm{R}=\mathrm{OAc}$
$f_{3}, m / e 221, \mathrm{R}=\mathrm{OCH}_{3}$

$k, m / e 205$

h, mi/e 189

i,m/e 175

j, m/e 470
acetoxy group is proved by the ion $m / e 427$ in derivative V in which there is no other acetoxy group. This cleavage takes place in the presence of 12 -oxo group only, because in derivative $X X I I$ which differs from V by the absence of the 12 -oxo group only, the loss of 43 mass units simply does not occur. Thus, ions of $m / e 455,427$ originate from the molecular ion of V, and the ion $m / e 410$ is formed by the loss of one molecule of acetic acid according to the McLafferty rearrangement. The latter ion loses a methyl radical under formation of ion $m / e 395$; ion $a_{3}, m / e 218$, is formed by retro-Diels-Alder cleavage of the ring \mathbf{C} (similarly as in group A), ion f_{1} is formed
by an analogous cleavage and the ion b_{1} of $m / e 205$ is formed by α-cleavage (with respect to the carbonyl group) connected with hydrogen transfer. Ion a_{3} loses a methyl radical under formation of ion $m / e 203$. Fragmentation of derivatives $V I$ and $V I I$ is analogous. In derivative $V I$ ions $a_{4}, m / e 276$, and $b_{2}, m / e 263$ are formed. From ion a_{4} the ion e_{2} of $m / e 203$ is formed by loss of radical ${ }^{\circ} \mathrm{CH}_{2} \mathrm{OAc}$. In derivative VII the analogous ions of type a and b occur at $m / e 262$ and 249.
$3 \beta, 28$-Dimethoxy derivatives were classified into group C (substances $X-X I V$), differing by substitution in the position 20 . The molecular ion of derivative XII, $m / e 530$, is fragmented in two ways. It loses the radical $\mathrm{CH}_{3} \mathrm{CO}$ from the acetyl group in the position 20 in the same way as substances from group B. The ion $m / e 487$ loses a molecule of methanol from ring A, under formation of ion $m / e 455$. The second type of cleavage of the molecular ion consists in the loss of a molecule of acetic acid from the side chain, in the position 19a, by McLafferty's rearrangement, under formation of ion $j, m / e 470$, which is further split in four ways. It loses a molecule of methanol from the ring A under formation of ion $m / e 438$, it loses the radical ${ }^{\bullet} \mathrm{CH}_{2} \mathrm{OCH}_{3}$ under formation of ion $m / e 425$, the base fragment a_{5} of $m / e 248$ is formed by retro-Diels-Alder cleavage of the enol form, and the ion b_{3} with $m / e 235$ is formed by α-cleavage (with respect to the carbonyl group in ring C) connected with hydrogen transfer. The ion $m / e 425$ is further fragmented. The loss of a molecule of methanol from ring A brings about the formation of ion $m / e 393$, and retro-Diels--Alder cleavage of the enol form of ring C produces ion $f_{3}, m / e 221$, and ion e_{2} of $m / e 203$ is formed analogously after charge transfer. If the loss of a methanol molecule takes place simultaneously, instead of ion f_{3} ion h is formed. From ion a_{5} ion e_{2} is also formed by a loss of radical ${ }^{\circ} \mathrm{CH}_{2} \mathrm{OCH}_{3}$. Derivative XI is cleaved in an analogous manner. The loss of the molecule of acetaldehyde from the side chain in the position 19α under formation of ion $m / e 444$ is interesting here. This ion evidently has an enolate structure formed by additional migration of the hydrogen from position 13β to position 19 (Scheme 1). Ion $m / e 429$ is formed by simultaneous loss of acetaldehyde and methyl radical. Derivative X is again cleaved analogously. The

$m / e 488$
$m / e 444$

Scheme 1
base fragment a_{6} of $m / e 264$ loses a molecule of water under formation of ion $m / e 246$, it then loses the radical $\mathrm{CH}_{3} \mathrm{CO}^{*}$ under formation of ion $m / e 221$, and a simultaneous loss of a water molecule and radical ${ }^{\circ} \mathrm{CH}_{2} \mathrm{OCH}_{3}$ leads to formation of ion $m / e 201$. In the mass spectra of derivatives $X I I I$ and $X I V$ which differ from the preceding ones in this group only by the fact that they do not have a methyl group in the position 20 , the expected fragments again appear. Thus, in the spectrum of derivative XIII ion a_{7} is present ($m / e 252$) which liberates a molecule of water under formation of ion m / e 234 , or it splits the radical ${ }^{\circ} \mathrm{CH}_{2} \mathrm{OH}$ under formation of ion $m / e 221$. Entirely analogous fragments are also found in the case of derivative XIV.

12-oxo derivatives substituted in the position 19α with a carboxyl or methoxycarbonyl group were classified into the group D (substances $V I I I, I X$ and $X V I I$). From diketone $X V I I$ the fragments of higher masses are formed by loss of methyl radical, radical $\mathrm{CH}_{3} \mathrm{O}^{\circ}$, a molecule of methanol, radical $\mathrm{CH}_{3} \mathrm{CO}^{*}$, methyl formate molecule, or their combination. The molecular ion is fragmented in two ways. By retro-Diels-Alder cleavage of the enol form ion a_{8} of $m / e 308$ is formed, from which ion $m / e 276$ is formed by the loss of a molecule of methanol, and ion $m / e 248$ is formed by the loss of one molecule of methyl formate from the ester group. α-Cleavage (with respect to carbonyl) combined with hydrogen transfer gives rise to ion b_{4}, $m / e 295$, which after the loss of methyl formate molecule gives ion $m / e 235$. Ion $m / e 276$ loses a molecule of acetic acid under formation of ion $m / e 216$ which is also formed from ion $m / e 248$ by the loss of a molecule of methanol. The ion $m / e 248$ loses the radical $\mathrm{CH}_{3} \mathrm{CO}$ - under formation of ion $m / e 205$. A fragment of the same mass is also the known ${ }^{10}$ ion k, belonging to rings A and B . Ion $m / e 206$ is generated from ion a_{8} by the loss of radical ${ }^{\circ} \mathrm{COOCH}_{3}$ and ${ }^{\circ} \mathrm{COCH}_{3}$. Derivative $I X$ is fragmented in an analogous manner. It differs from the preceding one only in the substituent at position 3 . All fragments belonging to rings C, D and E are identical in derivatives $X V I I$ and $I X$. In the mass spectrum of acid VIII fragments were again found which are the consequence of both basic types of fragmentation in this series. In addition to ion $a_{9}, m / e 294$, which loses a molecule of water under formation of ion $m / e 276$, the ion $b_{5}, m / e 281$, also occurs.

In group E (substances $I I$ and $I V$) the fragmentation differs from those of the preceding derivatives, due to the effect of the new hydroxy group in the position 13β. From the molecular ion both derivatives lose first a molecule of water, which stems evidently from the new hydroxy group. Further fragmentation is more complex. Only ions belonging to rings A and B (i.e. f_{1} and g in derivative $I I$ and h and in derivative $I V$) can be identified easily.

From the mass spectra of 12 -oxolupane derivatives $I, I I I, V-X I V$ and $X V I$ it is evident that their fragmentation takes place by two basic routes. The first is a retro--Diels-Alder cleavage of the enol form created in ring C, under formation of ion--radicals of type a. The second type is the α-cleavage (with respect to the carbonyl group) in ring C, combined with a hydrogen transfer, under formation of ions of
type b. The fragments of type b are always less abundant than the fragments of type a. The fragmentation of 12 -oxolupane derivatives can be considered as unambiguous and quite characteristic of the 12 -oxo group. Hence, mass spectrometry may serve for the proof of the 12-oxo group on the lupane skeleton (so long as no other oxo group - except the 3-oxo group - is present on the skeleton, or some other substituent on ring C). The fragmentation of 12-oxolupane derivatives is analogous to that of 12 -oxo- 18β-ursane derivatives ${ }^{10}$. In the spectra of none of the substances of our whole series could any sign of fragmentation be observed, which was claimed ${ }^{1}$ for the supposed 12 -oxolupane derivative $X V I I$. For this reason we judge that the second group in thurberine ${ }^{1}$, or the second oxo group in thurberodione is not in the position 12 .

The authors thank Dr Isao Kitagawa, Faculty of Pharmaceutical Sciences, Osaka University, Japan, for the kind donation of the ketone XIX sample, further Dr M. Budëšinsky, Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, Prague, for the measurement of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra, and Dr J. Vokoun, Microbiological Institute, Czechoslovak Academy of Sciences, Prague, for the measurement of some of the mass spectra.

REFERENCES

1. Joland S. D., Steelink C.: J. Org. Chem. 34, 1367 (1969).
2. Kitagawa I., Suzuki H., Kitazawa K., Yamao N., Yosioka I.: Chem. Pharm. Bull. 23, 355 (1975).
3. Vystrčil A., Protiva J.: This Journal 39, 1382 (1974).
4. Vystrčil A., Pouzar V.: This Journal 39, 2961 (1974).
5. Vystrčil A., Pouzar V.: This Journal 39, 3304 (1974).
6. Pouzar V., Protiva J., Lisá E., Klinotová E., Vystrčil A.: This Journal 40, 3046 (1975).
7. Pouzar V., Vystrčil A.: This Journal, in press.
8. Manzoor-i-Khuda M.: Tetrahedron 22, 2376 (1966).
9. Kasprzyk Z., Pyrek J.: Phytochemistry 7, 1631 (1968).
10. Budzikiewicz H., Wilson J. M., Djerassi C.: J. Amer. Chem. Soc. 85, 3688 (1963).
11. Budzikiewicz H., Djerassi C., Williams D. H.: Structure Elucidation of Natural Products by Mass Spectrometry, Vol. II. Holden-Day, San Francisco 1964.
12. Protiva J., Vystrčil A.: This Journal 41, 1200 (1976).
13. Snatzke G., Elgamal H. A.: Justus Liebigs Ann. Chem. 758, 190 (1972).
14. Uvarova N. I., Dzienko A. K., Oshitok G. I., Elyakov G. B.: Carbohyd. Res. 27,79 (1973).
15. Kitagawa I., Suzuki H., Yosioka I., Akiyama T., Silverton J. V.: Tetrahedron Lett. 1974, 1173.
16. Klinot J., Světlý J., Buděšinský M., Vystrčil A.: This Journal, in press.
17. Smith D. H., Djerassi C., Maurer K. H., Rapp U.: J. Amer. Chem. Soc. 96, 3482 (1974).
[^1]
[^0]: * Part LI in the series Triterpenes; Part L: This Journal 41, 1590 (1976).

[^1]: Translated by Z̀. Procházka.

